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Multi-stage bunch compression setups which are commonplace in Free-Electron Laser

(FEL) beam lines have shown to be the source of a collective beam instability, the so-

called microbunching instability. Collective forces can, in conjunction with the dispersive
effect of the magnetic chicane present in such a compressor stage, lead to an amplification

of inhomogeneities in the longitudinal charge density of an electron bunch. On the basis

of a well established model this process can be investigated via the evolution of a time-
discrete Vlasov system. Due to the exotic shape of the longitudinal phase space covered

by typical FEL-enabled electron bunches, naive grid-based approaches to the computer
simulation of such systems are prone to be prohibitively wasteful in terms of memory

and computation time. In this contribution we present an efficient simulation approach

based on the Perron-Frobenius operator method and quadtree domain decomposition.

1. Motivation

Free-electron lasers require high brightness electron bunches to drive the quintessen-

tial FEL instability in the undulators. Producing beams with the required peak

current directly at the gun is problematic, as space-charge effect will quickly de-

teriorate the quality of the – at this stage – low energetic bunches. FEL facilities

therefore typically employ the concept of bunch compression. A moderately long

bunch is produced at the photo cathode, which is successively compressed to the

desired peak current by means of a series of bunch compressor stages at increasing

energies. The RF-cavities in such a compressor are operated off-crest which causes

a longitudinal energy chirp to be imprinted on the bunch. Compression is then

achieved due to the dispersion in a subsequent magnetic chicane. It has become

clear that such a setup can give rise to the so-called micro-bunching instability that

can potentially disturb the bunch to a degree making it unusable for FEL opera-

tion. This is because the described setup allows the interaction between energy- and

density-inhomogeneities present in the bunch in a way that can lead to the amplifi-

cation of both. Along drift sections, Coulomb interaction with self-fields generated

by any density inhomogeneities results in a growth of local energy deviations. In

dispersive sections these energy inhomogeneities then affect the longitudinal charge

density distribution, potentially enhancing the initial inhomogeneities therein.
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2. Bunch-Compressor Model

In our investigations we will consider a one-dimensional model1–3 of the system in

the longitudinal phase space with the coordinates ~z = (q, p)T = (ξ − ξ0, E − E0)T ,

where ξ(0) denotes the longitudinal (reference) position in the bunch and E(0) is

the (reference) energy. We will consider ultra-relativistic bunches and hence ignore

velocity effects. As this model shall focus on space-charge driven effects, (coherent)

synchrotron radiation will be neglected. In this model the effect of a magnetic

chicane on the longitudinal phase-space vector of an electron is given by the drift-

type map

Dchic : R2 → R2,

(
q

p

)
7→
(
q +R(p)

p

)
, (1)

with a dispersion function R ∈ C1(R,R). This map does not include any collective

terms, which is justified by the assumption that the chicane is short compared to the

linac part of the compressor stage, in which the significant portion of the Coulomb

interaction will take place. Such a dispersion-free linac section is described by the

kick-type map

K[Ψ]cav,LSC : R2 → R2,

(
q

p

)
7→
(

q

p+ F [Ψ](q)

)
, (2)

where the force term F ∈ C1(R,R) describes the position dependent change in

energy due to off-crest acceleration and space-charge effects. Collective effects

are accounted for by the explicit dependence of F on the phase-space density

Ψ(· ; s) ∈ L1(R2,R) of the bunch at position s along the beam line. Note that

for our numerical approach we will additionally require the phase-space density

to be sufficiently smooth with respect to the chosen interpolation scheme, i.e.

Ψ(· ; s) ∈ CLn1 ≡ L1(R2,R)∩Cn(R2,R) in case of (n−1)th order bipolynomial inter-

polation. Without further knowledge, it appears that determining a self-consistent

kick-map from Equation (2) requires a time-continuous solution for the evolution of

Ψ along the linac. This is not the case, as will be illustrated in the following section.

For a more detailed discussion of the presented maps refer to the contribution4 of

M. Vogt which uses the same base-model.

3. Perron-Frobenius Operator

We present a Perron-Frobenius type simulation code, which tracks a grid-based

numerical representation of the phase-space density Ψ itself, rather than single

particles. The evolution of a phase-space density can be elegantly formalized by

the introduction of the Perron-Frobenius operator. Let M(·; s) : R2 → R2 be the

solution family of the single-particle equations of motion along a beam-line section

parameterized by the coordinate s. For measure-preserving maps M it can be

deduced that the phase-space density of a system is conserved along single particle
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trajectories; a result well known as Liouvilles theorem

Ψ(~z; 0) = Ψ
(
M(~z; s); s

)
∀s. (3)

If M additionally is invertible equation (3) directly yields an expression for the

time-forward phase-space density

Ψ(~z ; s) = Ψ
(
M−1(~z; s); 0

)
, (4)

so that the solution can be identified as

Ψ(· ; s) = Ψ(·; 0) ◦ M−1(· ; s) =:M(s)Ψ(· ; 0), (5)

whereM(s) ∈ lin(L1,L1) is called the Perron-Frobenius operator associated to the

map M(· ; s). Again, for the numerics we require M(· ; s) to be suitably smooth, so

that M(s) ∈ lin(CLn1 , CLn1 ). In the context of the application in a simulation code,

the central result is that a time-forward phase-space density can be evaluated at

a given point by tracking this point back to a position in the beamline where the

phase-space density is known and evaluate this density at the resulting point. The

maps (1) and (2) are symplectic, thus measure preserving and invertible, so that

Liouville’s theorem can be applied using the Perron-Frobenius operators Dchic and

K[Ψ]cav,LSC. Hence, the phase-space density after the nth bunch compressor stage

is given by

Ψn = DchicK[Ψn−1]cav,LSC Ψn−1. (6)

Furthermore, we can now motivate, why our model allows for a self-consistent, yet

time-discrete treatment of collective effects in the linac section. Considering only

space-charge effects, the collective part of F [Ψ] in the linac-map (2) describes the

interaction with the electric fields generated by inhomogeneities in the longitudinal

charge density λ(q; s) =
∫
R Ψ(q, p; s)dp. The fields are determined by Poisson’s

equation which generally yields solutions in the form of a convolution (here denoted

by the ∗ operator)

ELSC(·; s) ∝ Q̃[S, Ŝ](· ; s) ∗ λ(· ; s), (7)

where Q̃[S, Ŝ] is the Fourier transform of an LSC-impedance function that depends

on geometrical assumptions which will be discussed in the next section. It is im-

portant to note that the dependence of the kick-map (2) on Ψ(·; s) therefore is

restricted to a dependence on λ(·; s) – that is the projection of Ψ(·; s) – which, in

fact, is invariant under general kick-maps K(s) : (q, p) 7→ (q, p+ κ(q; s))

λ(q; s) =

∫
R

Ψ(q, p; s)dp =

∫
R
K(s)Ψ(q, p; 0)dp (8)

=

∫
R

Ψ(q, p− κ(q; s); 0)dp =

∫
R

Ψ(q, p; 0)dp (9)

= λ(q; 0). (10)
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The spatial charge density is frozen along the linac! Therefore equation (7) can be

integrated over the length d of the linac section

FLSC[Ψ] ∝
d∫

0

Q̃[S, Ŝ](· ; s) ∗ λ(· ; s) ds (11)

= λ(· ; 0) ∗
d∫

0

Q̃[S, Ŝ](· ; s) ds. (12)

As a result, our model allows the treatment of the magnetic chicane as well as the

linac part via a single time-discrete maps, which is visualized in Figure 1.

Ψ(· ; 0) Ψ(· ; s1) Ψ(· ; s2) Ψ(· ; s3) Ψ(· ; s4)
Kcav,LSC

s1←0
Dchic

s2←s1
Kcav,LSC

s3←s2 Dchic
s4←s3

Fig. 1. Time-discrete evolution of the phase-space density through two bunch-compressor stages.

4. LSC impedance model

For a one-dimensional LSC force model, assumptions about the bunch geometry

in the transverse direction have to be made. In our approach we model this lon-

gitudinal space charge force as the force acting on a test-charge distribution with

the transverse shape Ŝ(r, φ) at the position q within a bunch with transverse shape

S(r, φ). Following standard literature5, it can be seen that the dependence of this

force on the shape functions can be absorbed in single impedance term Q[S, Ŝ]

FLSC =
i q0 e

ε0
F−1

(
Q[S, Ŝ] · Fλ

)
, (13)

where q0 is the bunch charge, F denotes Fourier transformation and

Q[S, Ŝ](k) :=

∞∑
m=−∞

2π∫∫
0

∞∫∫
−∞

k r r̄ S(r, φ) Ŝ(r̄, φ̄) eim(φ̄−φ) (14)

× Im(|k| min(r, r̄))Km(|k| max(r, r̄))dφdφ̄ dr dr̄.

We have calculated this term for various useful combinations of the shape functions

SDa (r, φ) ≡
{

1
π a2 r ≤ a
0 r > a

, Sδ(r, φ) ≡ δ(r)

2π r
, and SGσ (r, φ) ≡ e−

1
2 ( rσ )2

2πσ2
, (15)
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representing a uniformly charged a-Disk, a single on-axis electron, and a radially

Gaussian distribution respectively. The resulting functions are shown in Figure 2

in terms of their dimensionless equivalent Q[·, ·](ξ) ≡ aQ[·, ·](ξ/a),

Q[SDa , S
δ](ξ) =

2

ξ

[
1− |ξ|K1(|ξ|)

]
(16)

Q[SDa , S
D
a ](ξ) =

2

ξ

[
1− 2K1(|ξ|) I1(|ξ|)

]
(17)

Q[SGa/2, S
δ](ξ) =

ξ

4
e
ξ2

8 Γ

(
0,
ξ2

8

)
. (18)
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Fig. 2. Plot of the impedance terms resulting from the Disk-δ, Disk-Disk and the Gauss-δ model.

Note that all functions are odd and only the positive domain is shown.

It can be seen that while the maxima and bandwidths of the impedance terms

depend on the choice for the bunch geometry, all terms converge in the high fre-

quency limit. Note that σ = a/2 has been chosen for the Gaussian term in this

comparison, because the transversal distributions SDa and SGa/2 feature the same

variance.

5. Quadtree Domain Decomposition

Due to the collective dependence an analytical solution to Equation (6) can in

general not be obtained, so that one has to resort to numerical solution methods.

In general, any such approach involves a numerical representation of the phase-

space density inside the limited memory of a classical computer. Typically the

PSD drops off sufficiently fast, so that it can be truncated at a threshold ε without

loosing significant contributions to the dynamics of the system. One of the most
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straight-forward ways to represent the truncated PSD is to store its function values

on a homogeneously sized grid and use an interpolation scheme for the evaluation

between the grid points. Trying to apply this to the case at hand one quickly

encounters a problem that is depicted in Figure 3. Typical FEL bunches form a

thin, hair-like structure that exhibits a strong curvature in the longitudinal phase

space. We call these PSDs exotic (of degree η) because the area of their minimal

enclosing rectangle is much larger than the area they actually cover, or formally

(supQ
εΨ − inf Q

εΨ)(supP
εΨ − inf P

εΨ) = (η + 1) ||supp(εΨ)||, (19)

where QεΨ ≡ {q | ∃p : (q, p) ∈ supp(εΨ)} , PεΨ analogously, and εΨ is the truncated

PSD defined by εΨ(~z) ≡ Ψ(~z) if Ψ(~z) > ε and 0 otherwise. sup, inf and supp denote

the supremum, infimum and support respectively. In the best case, sampling an

η-exotic truncated PSD on a homogeneous n × n grid results in ≈ η n2 zeros to

be stored in memory. Hence, O(n2) memory (and computation time) is wasted for

handling values that do not contribute to the simulation at all, which makes this

approach infeasible at high resolutions.

Our code minimizes this waste of computational resources by employing the

method of quadtree6 domain decomposition, which is illustrated in Figure 3. The

basic idea is to divide the phase space into a hierarchy of rectangles decreasing

in size. Any rectangle that intersects the support of εΨ is divided in four similar,

disjoint child -rectangles unless a maximum recursion depth r is reached. In a graph,

where the nodes represent rectangles and edges represent parent-child relations this

results in a tree, where each non-leaf node is of degree 4. Only on the smallest

rectangles – the bottom-level leafs – the function values of the PSD are stored on a

uniform grid.

Fig. 3. Schematic of quadtree domain decomposition with depth 3. The support of εΨ is shown
in grey. Smallest leafs are marked with thick lines; only here function values are stored.
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Such a tree data structure can be easily implemented in any programming lan-

guage that supports pointers. To evaluate the function at ~z, the bottom-level leaf

containing ~z is found and an interpolated function value based on the samples stored

in this leaf is returned. If ~z does not lie inside one of the smallest rectangles, 0 is

returned. Using pointers, the algorithm to find the containing leaf has a runtime

O(r) and hence is negligible in performance considerations. Such a tree will contain

bottom-level leaf that actually do not contain any density themselves, but were

generated because one of their siblings does. The amount of these artifacts scales

with the number of leafs on the boundary of supp(εΨ). Hence, the waste of memory

is reduced from O(n2) = O(22r) to O(2r) = O(n). In addition to the parent-child

pointers, in our implementation we also include pointers connecting neighbouring

rectangles of the same size.

The resulting data-structure excels naive data-grids in many more respects be-

sides the memory efficiency. The pointer structure allows for the direct application

of well-known graph algorithms that can be used to efficiently implement many

physically important operations. Traversal algorithms, for instance, can be used

for a fast evaluation of integrals of Ψ such as projections, statistical momenta and

general expectation values. Additionally boundary-finding algorithms can be em-

ployed to gain geometrical information about the phase-space density, e.g. its shape

and location in phase-space. As described in the next section this can be used to

overcome the possible problem of densities escaping from the simulation window.

6. Perron-Frobenius Simulation Step

In this section an efficient numerical implementation of a Perron-Frobenius simula-

tion step will be presented. Given an initial phase-space density Ψi and a solution

M of the single particle equations of motion along a beam-line element, the final

phase-space density Ψf can be determined from Equation (5), which states that the

value of Ψf at ~z is equal to the value of Ψi at the backward-tracked phase-space

position M−1(~z).

Firstly Ψi is brought from its input format (analytic mathematical expression,

particle ensembles, etc.) into the quadtree form described in the previous section. In

the process a sensible threshold ε is chosen†. In a next step the minimum bounding

rectangle (MBR) of supp(Ψf ) is calculated. For this, the boundary ∂supp(Ψi) is

determined, which can be achieved efficiently using the aforementioned neighbour-

pointers for PSDs with connected support. It can be seen that

MBR[supp(Ψf )] = MBR[∂supp(Ψf )] = MBR[M(∂supp(Ψi))].

Subsequently a new quadtree PSD is initialized, with its root rectangle covering

†To avoid notational clutter, we will no longer explicitly denote this truncation in the following:

εΨ → Ψ. Furthermore we will use standard mathematical notation, even when referring to numer-

ical equivalents, e.g. “a set of points that fully characterizes the boundary of the support of Ψf”
→ ∂supp(Ψf ).
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the calculated phase-space region. This tree is then refined at a seed position

M(~z), ~z ∈ supp(Ψi) to the desired depth. Starting from this seed leaf the tree is

then grown by utilizing a flood-fill algorithm: The value of Ψi ◦M−1 is calculated

for a representative number of points, lying on the edges of the leaf. If a function

value exceeds the threshold the same-size neighbour-leaf in the respective direction

is generated, in case it did not exist yet. This process is repeated for all newly

generated bottom-level leafs. If This algorithm terminates when all bottom-level

leafs necessary to cover the connected component of supp(Ψf ) containing the seed

are generated. In case of multiple connected components the process is repeated

with a seed from the next connected component. Note that generating a leaf here

refers to inserting the respective node into the tree and storing the values of Ψi◦M−1

on a grid covering the leaf for later interpolation. Figure 4 summarizes the described

simulation steps visually.

This flood-fill approach is efficient in the sense that Ψi is rarely evaluated unnec-

essarily, i.e. evaluated outside of its support. This only happens when the flood-fill

algorithm works on the border of supp(Ψf ) so that the waste in computation time

is O(||∂supp(Ψf )||) = O(2r).

Fig. 4. (a) Initial phase-space density Ψi, (b) Ψi in tree form, (c) ∂supp(Ψi), (d) M(∂supp(Ψi)),

(e) New tree structure, initialized around MBR[M(∂supp(Ψi))] and refined at a seed position, (f)
Ψf in tree form as the result of the flood-fill algorithm
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7. Benchmarks

We implemented the presented numerical methods in a C++ code with the working

name PFTC2D; a Perron-F robenius T ree Code in two D imensions. The code is

under develepement but first benchmark results shown in Figure 5 and 6 already

prove the viability of the approach. The test case is the repeated application of a

rotation map (one revolution per 100 steps) to an off-center Gaussian distribution.

It can be seen that the integrated phase-space density is very well preserved even

for low recursion depths. The loss rate is lower than 10−5 per 100 steps. Execution

times for all 300 steps on an i5-6500T CPU range from ≈ 3 s at r = 5 to ≈ 11 min at

r = 9 ‡. Note that with the time-discrete model introduced in section 2 a complete

bunch-compressor stage can be simulated in 2 steps!

0 50 100 150 200 250 300

0

0.5

1

1.5

2

·10−5

Step Number

1
−
||Ψ

|| L
1

r = 5
r = 6
r = 7
r = 8
r = 9

Fig. 5. Evolution of the absolute error of the integrated phase-space density for different recursion
depths r.

8. Conclusion & Outlook

Quadtree-domain decomposition is a viable tool to approach the numerical chal-

lenges arising from the exotic phase-space structure of FEL bunches. We imple-

mented this method in PFTC2D, which is currently under development. This code

utilizes a time-discrete Vlasov model which is very well suited for investigating LSC

driven microbunching in cascaded bunch-compressor setups.

‡Gaussians are hardly exotic so that these timings do not reflect the full potential of the code. For
more exotic phase-space densities faster execution times at even higher recursion depths are to be

expected.
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Fig. 6. Evolution of the centroid position at a recursion depth of 5. Note that this plot shows 3

revolutions.

It is noteworthy that the presented tree-based Perron-Frobenius simulation

method is in no way restricted to time-discrete systems with one degree of freedom

like the one we presented. In fact, the underlying data structures of PFTC2D were

developed to support phase-spaces of arbitrary dimension. At higher dimensions,

a tree of hypercubes is generated instead of a quadtree but all arguments made

in sections 5 and 6 still hold or can be trivially extended to this case. Systems

that require time-continouos treatment can be simulated by employing a suitable

operator-splitting scheme. This, for instance, would be neccessary to include CSR

effects in the model.
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